	Applications and Interpretation	Analysis and Approaches
Topic 1: Number and Algebra	- Scientific notation. - Arithmetic sequences and series - nth term, sum of, sigma notation, applications, analysis, interpretation and prediction. - Geometric sequences and series - nth term, sum of sigma notation, applications. - Financial applications of geometric - compound interest, annual depreciation. - Exponent laws (integer exponents). - Logarithms base 10 and e, numerical evaluations of logarithms.	
	- Sig Fig, decimal places, bounds, percentage errors, estimation. - Amortization and annuities using tech. - Tech for 3 variables, polynomial equations.	- Simple deductive proof, numerical and algebraic. - Equality and identity. - Laws of logarithms, change of base law, solving exponential equations. - Sum of infinitive convergent sequences. - Binomial theorem and Pascal.
Topic 2: Functions	- Equation of straight line, gradients intercepts, gradients, parallel and perpendicular lines. - Functions, domain, range, notation, inverse functions, reflection in $y=x$, mathematical models. - Graph of function, sketch from info given, tech to graph functions, key features of graphs, intersection of 2 graphs using tech.	
	- Modelling with - - Linear models - Quadratic models - intercepts, roots, vertex, axis of symmetry - Exponential growth and decay, asymptotes - Direct/inverse variation, asymptotes - Cubic models - Sinusoidal models. - Modelling skills - create, fit and use models and graphs. Develop models, context, domain for model, parameter of model, test and reflect, use model to	- Composite functions, identity functions, reversing inverse. - Quadratic function - all forms and properties. - Solving quadratics and inequalities. - Quad formula and discriminant. - Reciprocal function, rational functions, asymptotes. - Exponential functions, logarithmic functions and graphs. - Solving equations - graphically, analytically, using tech. Applications. - Transformations of graphs and composite transf.

	interpret and read then make predictions.
Topic 3: Geometry and Trigonometry	- Distance between two points in 3D space, and midpoint. - Volume and surface area of 3D solids. - Circle, length of arc, area of a sector. - Angle between two intersecting lines. Angles of elevation and depression, construction of labelled diags. - Pythagoras, SOH CAH TOA, Sine and Cosine rule, area of a triangle, non-right-angled trig.
	- Perpendicular bisectors. - Voronoi diagrams: vertices, edges, cells. - Applications of 'toxic waste dump' problem. - Radian measure. - Definition of cos, sin on unit circle. - Tan as \sin / \cos - Exact values of trig ratios (pi/6 etc) - Extension of sine rule to ambiguous case. - Double angle identities, relationship between trig ratios. - Circular functions sin, cos, tan - period, amplitude, graphs etc. - Transformations of trig graphs. - Real life contexts. - Solving trig equations in finite interval. - Equations leading to quad equations in \sin , \cos , \tan.
Topic 4: Stats and Probability	- Population, sample, random, discrete, continuous, bias, reliability, outliers, sampling techniques and effectiveness. - Presentation of data, frequency distributions, histograms, cumulative frequency graphs, median, quartiles, percentiles, range, IQR. - Box and whisker diagrams and understanding. - Measures of central tendency, estimation of mean, modal class, dispersion (standard deviation, variance, IQR). - Effects of constant changes on data, quartiles of discrete data. - Linear correlation, Pearson's correlation. - Scatter diagrams, lines of best fit, passing through mean point.

	- Equation of regression line, using to predict, interpret meaning of a and b in regression equation. - Concepts of trial, outcome, equally likely outcomes, relative frequency, sample space, event. - Probability of an event, complementary events, expected number of events. - Use of Venn diagrams, tree diagrams, sample space diagrams, tables of outcomes. - Combined events, mutually exclusive events, conditional probability, independent events. - Discrete random variables, probability distributions, expected value (mean) discrete data. Applications. - Binomial Distribution, mean and variance. - Normal distribution and curve, properties of distribution, normal probability, inverse normal.	
	- Spearman's Rank correlation. - Appropriateness and limitations of Pearson's and Spearman's and effect of outliers on each. - Null and alternative hypotheses, significance levels, p-value, expected and observed, chi-squared independence test. - Chi-squared goodness of fit. - T-test, p-value to compare populations. One-tailed and two-tailed tests.	- Regression line x on y. Equation for prediction. - Formula for probabilities. - Standardization of normal variables (z-values), inverse where mean and s.d. are unknown.
Topic 5: Calculus	- Introducing limits, derivative interpreted - Increasing and decreasing functions, grap - Derivative where all exponents integers. - Tangents and normal at given point, and - Integration introduction as anti-differentia - Integration to find constant term (c). - Definite integrals using technology. Area	dient function and as rate of change. representation of gradient $>0,=0,<0$. equations. gion enclosed by curve and x axis.
	- Values of x where gradient is 0 . Finding solution where $\mathrm{f}^{\prime}(\mathrm{x})=0$. Local max and min points. - Optimisation in context.	- Derivative of trig and logs (sum and multiples of these). - Chain, product and quotient rules. - Second derivative, graphical functions, relationship between function, der and sec der.

green is IB1, yellow and blue are the two different courses for IB2.

